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LElTER TO THE EDITOR 

The Dirac oscillator 

M Moshinskyt and A SzczepaniakS 
Instituto de Fisica, Universidad Nacional Autonoma de Mtxico, Apdo Postal 20-364, 
Mtxico, D.F. 01000, Mexico 

Received 8 June 1989 

Abstract. Dirac’s free particle equation originated in an attempt to express linearly the 
relativistic quadratic relation between energy and momentum. We introduce a Dirac 
equation which, besides the momentum, is also linear in the coordinates. We call it the 
Dirac oscillator because in the non-relativistic limit it becomes a harmonic oscillator with 
a very strong spin-orbit coupling term. The eigenstates and eigenvalues of the Dirac 
oscillator can be obtained in an elementary fashion, with the degeneracy of the latter being 
quite different from that of the ordinary oscillator. We briefly mention the symmetry Lie 
algebra responsible for this degeneracy and the generalisation of the problem to many- 
particle systems. 

The standard [l] derivation of the Dirac equation starts with the attempt to linearise 
the free-particle equation associated with the name of Klein-Gordon, where the latter 
is based on the quadratic relativistic relation between energy E and momentum p ,  i.e. 
E’ = p 2 c 2 +  m2c4, where c is the velocity of light and m is the mass of the particle. 
Once the free-particle Dirac equation is obtained, which represents a particle of spin 
4 , an electromagnetic interaction can be incorporated by replacing the energy- 
momentum 4-vector p,, p =0,1,2,3,  with p o = ( E / c ) ,  by p ,  - ( e / c ) A , ,  where A ,  is 
the 4-vector potential. 

Among the usual applications [l] of the Dirac equation in an external field, are 
those in which the spatial components Ai, i = 1,2,3,  vanish and ( e / c ) A o =  4 depends 
only on the magnitude r of the position vector as happens, for example [l], in the 
hydrogen atom when 

4 = - ( e ’ / r ) .  (1) 
One may also consider the situation for an harmonic oscillator potential 4 of the 

form 

4 = 4mw2r2 (2) 
with w being the frequency, and discuss eigenvalues and eigenstates of the resulting 
Dirac equation along the same lines as is done in the Coulomb case [l]. 

But one could argue that the oscillator potential, giving rise to a non-relativistic 
quadratic Hamiltonian in both coordinates and momenta, should, in the relativistic 
case of particles of spin 5 ,  give a linear equation in both coordinates and momenta. 
As we shall show, this is very easy to implement, giving rise to what we call a Dirac 
oscillator. The equations satisfied by the large components of the Dirac oscillator turn 
out to be those of the standard oscillator plus a strong spin-orbit coupling term. 
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We proceed to derive the Dirac oscillator equation. The free-particle expression 
can be written as [ l ]  

ih(a+/et)= c a - p + + m c 2 p *  ( 3 )  

p = (h/i)V ( 4 a )  

where t is the time and 

in which U is the vector Pauli spin matrix, whose components have the property 

uiuj = 6, + i &ijkuk ( 4 4  

where repeated indices are summed over k = 1 , 2 , 3 .  
We are now looking for some expression on the right-hand side of ( 3 ) ,  that should 

be linear in both p and r, and can be interpreted as a harmonic oscillator Hamiltonian 
in the non-relativistic limit. 

We choose to write 

ih(ag/at)  = [ c a  - ( p  - imwrp) + m c 2 p ] +  ( 5 )  

where, as before, w will denote the frequency of our oscillator. Clearly we see that 
the right-hand side of ( 5 )  is Hermitian. Furthermore expressing the dependence of 9 
on t as exp(-iEt/h) and writing 

* = [;:I 
where 
we see that they satisfy the equations 

, t,h2 are the large and small components respectively of the Dirac wavefunction, 

( E  -mc’)$, = c u .  ( ~ + i m w r ) + ~  

( E  + m ~ ~ ) ~ , h ~ =  c u  ( p  -imwr)t,b, . 
( 7 a )  

( 7 b )  
Multiplying ( 7 a )  by E + mc2 and using ( 7 b )  and ( 4 d ) ,  we obtain 

( E 2  - m2c4)t,h1 = [ c’( p 2 +  m 2 0 2 r 2 )  - 3hwmc2 -4mc2(w/  h ) L  SI$* (8) 

where 

L = r x p  s = ( h / 2 ) a .  (9) 

Writing now E = mc2+ E, the E 2 -  m2c4 term on the left-hand side of (8) becomes 
approximately 2mc2e if E << mc2. Thus in the non-relativistic limit the energy E of the 
problem becomes the eigenvalue of the operator on the right-hand side of (8) divided 
by 2mc2, which corresponds to the Hamiltonian of a harmonic oscillator of frequency 
o together with a spin-orbit coupling term of strength - ( 2 w / h ) .  

Due to this behaviour in the non-relativistic limit, we shall refer to equation ( 5 )  as 
corresponding to a Diruc oscillator. 

The right-hand side of (8) commutes with the total angular momentum 

J = L + S  (10) 
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and this in the spherical coordinates ( r ,  0 , 4 )  the solution of (8) is given by the ket [ 2 ]  

In ( l l ) ,  ( I ) is a Clebsch-Gordan coefficient, R N f ( r )  is the radial wavefunction [2] 
of the three-dimensional oscillator for N quanta and orbital angular momentum 1, 
Y[,(B, 4 )  is a spherical harmonic and xu is a spin function for the two projections 
U = if, i.e. 

x1,2 = [A] x - 1 / 2  = [ ;] . 

As we have 

2 L . S =  J 2 - L 2 - S 2  (13) 

the eigenvalue of the operator on the right-hand side of (8), corresponding to the 
eigenfunction ( l l ) ,  is given by 

hw[2(N-j)+l] if1Zj-i (14a) 
hw[2(  N + j )  + 31 (14b) if 1 = j +f . (mc2)-’(E2,,,.-m2c4) = 

We clearly see the existence of an infinite degeneracy if 1 = j  -i as the ( N ,  j )  pair 
has the same energy as all the pairs 

( N i l J i l ) ,  ( N i 2 , j i 2 ) ,  . . . (15) 

and the series is not bounded from above. 
On the other hand if 1 = j  + d  there is the same energy for all the pairs 

( N i l , j ~ l ) , ( N i 2 , j ~ 2 ) , .  . . 
and the series cuts off both at j = f and N = 0, so there is a finite degeneracy. 

In a paper to be submitted shortly for publication, Moshinsky and Quesne show 
that the symmetry Lie algebra responsible for the infinite accidental degeneracy in the 
Dirac oscillator i.e. when 1 = j - f ,  is the Lorentz algebra o(3, l ) ,  while in the finite 
case 1 = j + f  the symmetry Lie algebra is the orthogonal one o(4). 

Furthermore, the concept of linear Dirac oscillator interactions of the type ( 5 )  has 
been extended to many-body systems by Moshinsky and Szczepaniak, and is being 
studied for its relevance to the baryon mass spectra by Aquino, Loyola and Moshinsky. 

Due to the interest of the Dirac oscillator concept in many fields, we submit this 
preliminary discussion as a reference for all the works that will follow. 
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